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Abstract—While in brain computer interface (BCI) field the 
research is focused basically on finding improved processing 
methods leading to both high classification rates and high bit 
transfer rates, in this paper the same BCIs performances are 
addressed but, this time, with the emphasis set on the subject-
specific discriminative cognitive tasks selection process. In this 
respect, a set of twelve electroencephalographic (EEG)-
discriminative mental tasks was proposed to be studied in 
conjunction with four different subjects. For each subject, a 
particular set of four mental tasks was selected. The classification 
performances corresponding to these particular sets of tasks were 
obtained using some standard processing methods (i.e., the 
autoregressive model of the EEG signals and a multilayer 
perceptron classifier trained with back-propagation algorithm). 
The superior classification rates achieved for the selected sets 
compared to other set of mental tasks commonly used in the 4-
class BCI studies (i.e. the set proposed by Keirn and Aunon [3]) 
promote the idea of subject-oriented mental tasks selection 
process as a necessary preliminary step in any high-quality BCI 
application. 

Keywords-brain-computer interface application; EEG-
discriminative mental tasks; autoregressive model; Bayes quadratic 
classifier; artificial neural networks 

I. INTRODUCTION 
Until now, the research in the EEG-based BCI field was 

concentrated mostly on the processing and, respectively, on the 
classification issues, with little or almost no emphasis put on 
the selection process of the subject-appropriate set of mental 
tasks. Usually, the selection of the mental processes used to 
command mentally a device involved the assumption of tasks’ 
capacity to elicit specific differentiated EEG patterns. Based on 
the results reported by various psycho-physiological studies 
and brain imaging studies some motor and non-motor imagery 
tasks were selected more frequently. Such covert mental 
processes are the following imagined tasks: movements of 
tongue [1], of right or left hand, finger or foot [2], relax, 
counting, writing a letter, doing a mathematical calculus, 
rotating a 3D object [3], verbal fluency tasks like phonemic 
(letter-cued) silent word generation and semantic (category-
cued) silent word generation etc. Of these mental tasks the sets 
of only motor imagery tasks are the most exploited [1]. 

However, some sets of only non-motor imagery tasks [3] or 
combined motor with non-motor imagery tasks [4] were 
considered also. In spite of this diversity of mental processes 
analyzed in the 4-class BCI applications – with the EEG data 
being either recorded, within particular conditions, from some 
volunteers or taken from freely provided on the internet 
databases [5] – we simply remark, as much as we know, that: 

- the classification performances for any given set of overt 
[2] or covert cognitive [1] tasks vary significantly from 
subject to subject, thus making difficult the conclusions 
regarding a particular processing method or another (in 
general, the results of the best performing subject are 
reported); an elaborated example is a 4-class BCI 
application [1] where – for the same tasks but for subject-
specific selected features – the reported correct 
classification rates are for one of the subjects (92, 92, 100, 
70) while for the other three investigated subjects, the 
performances are significantly lower, namely (62, 86, 92, 
96), (54, 92, 54, 73) and (62, 38, 80, 60), respectively. 
This example may well suggest not necessarily inadequate 
processing approaches but rather low subject-specific 
discriminative power of the respective set of mental tasks, 
at least in conjunction with the adopted EEG feature-
extraction methodology. 

- often, the classification rates obtained on the same set of 
tasks, but using different new or improved processing 
methods, are slightly (and only at times, significantly) 
better than some previously reported reference results – at 
least, for part of the subjects; we think this could be due 
also to the limitation imposed primarily by the subject 
inappropriate (in rapport with a particular EEG feature 
vector) selected tasks; frequently, in such conditions, 
small improvements in the classification scores are 
counterweighed by the increased complexity of the 
algorithms proposed, also reflected in more time 
consuming. 

From the aforementioned comments, we assumed that in 
order to obtain high classification rates, a preliminary 
subject-oriented selection of the most EEG-discriminative tasks 
is necessary. In what follows we will show that such a proper 
selection of the subject–specific mental tasks could lead to high 



classification rates even when using some standard processing 
techniques (that are less time consuming) instead of using some 
new or improved, but also frequently more complex, versions 
of these techniques. This last advantage is critical especially 
within the on-line BCI applications where always there is a 
trade-off between the high classification performances obtained 
and the less time-consuming processing and classification 
methods that are used. Partly, the idea of our research has its 
roots in some researches that reveal the inter-subject variability 
of the way the same cognitive processes occur at the cortical 
level [6]. To some extent, these differences appears as a direct 
consequence of both the own native talents and sustained 
training, often reflected in the chosen profession (i.e., 
musicians, mathematicians etc.). 

In what follows, we investigate in what degree the use of 
subject-specific set of four mental tasks – in the context of 
some standard processing and classification methods (i.e., the 
autoregressive (AR) model of the EEG signals and a multilayer 
perceptron classifier trained with back-propagation algorithm) 
– influences the classification performances. For this, a set of 
twelve cognitive processes was first analyzed, out of which 
only four tasks were selected for each participant to the study. 
Within the selection step the same AR processing method was 
used together with a two-class Bayes quadratic classifier. 

II. EXPERIMENTAL SETUP 

A. EEG signal recording 
Four healthy, right-handed subjects (i.e., subjecs S1, S2, S3, 

and S4), aged between 22 and 35 years, participated to this 
study after informed consent. The subjects were seated in a 
noiseless room with dim lighting. The EEG signals were 
recorded during 12 covert mental tasks (4 motor imagery and 8 
non-motor imagery tasks). In all tasks, the subjects were 
instructed not to verbalize or vocalize and not to take any overt 
movement. Signals were recorded for 20 seconds during each 
task and each task was repeated four times. Successive tasks 
were separated by a resting period of 30 seconds. For subject 
S4 a second session of recording was repeated after a week. 

The system used for data acquisition was a MindSet 24 
system. Measurements were made from 19 active electrodes, 
with reference to electrically linked ears, A1 and A2. Only 6 
out of the 19 electrodes (with the positions defined by the 10–
20 system of electrode placement.) were further analyzed (i.e., 
C3, C4, P3, P4, O1, and O2). The analysis of the data was done 
using raw EEG signals, with no explicit artifact removal. The 
sampling rate was 256 Hz and the data were band pass filtered 
with and antialiasing filter from 1.4 Hz to 35 Hz (-3 dB). 

B. Different experimental conditions 
There is a body of literature that suggest that there are 

measurable differences in the EEG signals that correlate with 
different types of mental processes. Based on such reported 
results we selected to investigate within our research a large set 
of mental tasks. During the study, the subjects performed the 
following twelve different mental processes, containing 
together motor and non-motor imagery tasks: 

(1) Resting task (relax): The subjects were required to 
relax as much as possible and try to think of nothing in 
particular. 

(2) Counting (count): The subjects were asked to imagine 
a counting down operation beginning from a random 
number specified before the recording. 

(3) Letter composing (letter): The subjects had to mentally 
compose a letter (with a positive emotional content) to 
a friend or relative. 

(4) Geometrical figure rotation (rotate): The subjects were 
instructed to visualize a mug for 30 s before the 
recording. Then, the mug was removed and the 
subjects were asked to mentally visualize the mug 
being randomly rotated about its axes. 

(5) Mathematical adding (math): Before the recording the 
subjects were given a random number and were asked 
to add the number to its consecutive number; then, the 
result had to be added to its corresponding following 
number and so on. At the end of the recording, the 
subject’s result was checked if it corresponded to one 
of the possible correct responses. 

(6) Left fingers movement (fingerL): The subjects had to 
imagine opening and closing alternately the left hand 
fingers, without doing effectively the movements. 

(7) Right fingers movement task (fingerR): The subjects 
were instructed to imagine opening and closing 
alternatively the right hand fingers without ay overt 
movement. 

(8) Left arm movement (armL): The subjects were asked to 
imagine how they are slowly rising and falling their left 
arm without any overt movement. 

(9) Right arm movement (armR): The subjects had to 
imagine how they are slowly rising and falling down 
their right arm without any overt movement. 

(10) Letter-cued silent word generation (wordG): Before 
the recording, the subjects were told an alphabetical 
letter and they had to find words beginning with that 
letter. 

(11) Letter-cued silent names generation (wordN): Before 
the recording, the subjects were told an alphabetical 
letter and they were asked to find as many as possible 
names beginning with that letter. 

(12) Mentally reciting a poetry (wordP): The subjects were 
asked to mentally recite a poetry, without vocalizing. 

Within this large set, beside the first five tasks 
corresponding to the set proposed by Keirn and Aunon [3] – set 
that we used as reference when reported and discussed the 
results – we also included some largely exploited motor tasks 
(i.e., movements of fingers and arms) together with not very 
used imagery tasks (i.e., verbal fluency tasks and poetry 
reciting task). 

III. DATA ANALYSIS AND SUBJECT’S EEG-DISCRIMINATIVE 
MENTAL TASKS SELECTION 

In order to select the subject’ suitable set of four mental 
tasks we made an exhaustive analysis concerning the 
discriminative power of each out of the 66 possible pairs of 
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tasks. In this case, the two-class classification problems were 
solved using a Bayes quadratic classifier. The feature vectors 
constructed with the estimated coefficients of the EEG-
autoregressive model were the inputs of the Bayes classifier.  

A. Autoregressive model 
The parameters of the six-order standard parametric AR 

model of the EEG signal – adopted to obtain the feature vectors 
– were estimated using the Yule-Walker method [7]. The AR 
parameters were extracted for each 0.25 s sliding windows (64 
samples), overlapped by 0.125 s (32 samples). 

Having six acquiring EEG channels, for each time window 
corresponding to a sliding window we obtained feature vectors 
of 36 elements (6 AR parameters/window/channel * 6 
channels). The order six for the AR model (adopted in other 
similar studies too [8]) was chosen here in order to easily report 
the results. 

B. Bayes classifier 
The Bayes classifier – an optimal, well-known probabilistic 

method for data classification – considers the feature vector as 
a random vector, and, in consequence, the parameters of the 
AR model are viewed as random variables. Through the 
inference process the Bayes method finds the unknown 
posterior probability P(Ci|x) for each class Ci and for a 
particular feature vector x that has to be classify. Using the 
Bayes theorem, the posterior probability, p(Ci|x), is actually 
determined based on the prior probability of the class, P(Ci), 
and on the likelihood function p(x|Ci): 
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Here, d represents the dimensionality of the feature vector (i.e., 
36 in our case) and Σi and μi are the covariance matrix and, 
respectively, the mean vector for class i. Each mean vector, μi, 
and each covariance matrix, Σi, were estimated based on the 
training data set which represented 80% of the entire data set, 
the rest of 20% of the data being used for the cross-validation 
set. The formulas used to estimate the above parameters were: 
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In the abovementioned formulas, Ni is the number of the 
training samples belonging to class i and xi

j is the sample j 
belonging to class i. 

Finally, the Bayes classifier assigns the unknown feature 
vector x to class Ci if and only if:  

 ( ) ( ){ } 2,1,max == kxCPxCP kki
 (4) 

Here, the k variable (denoting the class index) takes only the 
following two values, {1, 2}.  

C. Selection of mental tasks 
To select the subject-specific most discriminative four 

cognitive tasks out of the 12 investigated in this paper, for each 
subject an exhaustive automatic analysis was done. For each 
subject, the all four-task possible combinations were 
enumerated and the mean classification rates were computed 
for all such combinations based on the corresponding two-class 
correct classification rates compactly presented in the tables II, 
III, IV and V, respectively. The applied formula was: 
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where: Ti symbolises a task out of the four analyzed tasks and 
rTiTj and rTjTi represent the correct classification rates obtained 
within the classification problem of the two tasks (Ti, Tj). 

Of these calculated values, for each subject we selected the 
4-task combination that led to the best mean classification rate. 
The results presented in tables VI, VII, VIII, and IX, 
respectively, were obtained using additionally a threshold 
criterion. Namely, if for at lest one pair of tasks – out of the 6 
that can be derived for each 4-task combination – there are 
correct classification rates below a given threshold then, the 
corresponding 4-task combination was eliminated from our 
analysis. Different specific two thresholds were applied for 
each subject. 

IV. TESTING THE CLASSIFICATION ACCURACY ON THE 
SELECTED  SETS OF MENTAL TASKS 

As we have already mentioned, we applied the Bayes rule 
only in the best discriminative two-task selection phase. In a 
second step of analysis, we compared the performances 
obtained by us (with the previous selected sets of tasks) with 
similar results reported in the literature 

A. Multilayer perceptron classifier 
The classifier used in the second step of analysis (i.e., in the 

four-class problems) was an artificial neuronal network of 
multilayer perceptron type (MLP), trained with the 
backpropagation algorithm. Mainly, this particular choice was 
done based on the good performances and extensive utilization 
of the neuronal networks in the BCI systems [9]. 

The employed MLP network had one hidden layer of 35 
processing elements (PE), with activation functions of tanh 
type. The input layer consisted in 36 PEs corresponding to the 
36 components of the input feature vectors. The output layer 
had 4 PEs, corresponding to the 4 cognitive tasks’ associated 



classes. For the output PEs the activation functions were of 
sigmoid type. 

V. RESULTS 
The classification results (extracted from the confusion 

matrixes corresponding to the cross-validation sets, for each of 
the four subjects and for the all 66 pairs of tasks out of the 12 
proposed cognitive tasks) are compactly presented in Table II. 

To exemplify, this compact representation was done as 
follows: the classification rates from the first diagonal of the 
CV confusion matrix – presented, as an example, in Table I, 
for S1 and for the pair of tasks (wordP, rotate) – can be drawn 
from Table II (S1) also, from the intersections of the line 
wordP with the column rotate (this is the true positives rate for 
the wordP task) and of the line rotate with the column wordP 
(this is the true positives rate for the rotate task). Notice that 
the two abovementioned values correspond to the same two-
class discriminating problem, namely, (wordP versus rotate).   

TABLE I.  THE CONFUSION MATRIX ON CV SET, FOR THE 
PAIR OF TASKS (WORDP, ROTATE) 

             Bayes results 
True classes WordP  Rotate 

WordP 90.08 % 9.92 % 
Rotate 6.72 % 93.28 % 

Further, using the already presented tasks’ selecting 
approach, we obtained for each subject the following best 
combinations of tasks – listed in their decreasing mean 
classification rates (see Table III). A summary of the finally 
selected sets of tasks, corresponding to the four investigated 
subjects, is presented in Tabel IV. In Tabel V the 
performances obtained with these selected sets of tasks are 
comparatively presented, together with the performances 
achieved for a reference set of tasks, comprising in 4 out of the 
5 proposed by Keirn and Aunon mental tasks [3] – i.e., the 
(count, letter, math, rotate) set. 

As expected, the results showed in tables III and IV confirm 
the inter-subject great variability regarding the selected 4-task 
combination. Additionally, the results presented in table 5 give 
us a measure of how much such preliminary subject analysis 
can improve the classification results without any 
improvements within the algorithmic part of the BCI developed 
system. Here, for exemplification, we took into discussion the 
commonly used set of tasks of Keirn and Aunon and showed 
that using this particular set for all investigated subjects, 
without any discrimination, may lead to lower performances as 
in table VI (S2). 

The consistence of the above reported results was further 
tested on subject S4, for which a second session of recording 
was repeated after a week. On the resulted new set of EEG data 
the same processing steps (as those applied on the first set of 
data) were employed. 

The single main difference consisted in the classifying 
process of the extracted EEG feature vectors which, this time, 
was done with a MLP network trained with the entire feature 
vectors’ set obtained on the EEG data acquired in the previous 
week.   

TABLE II.  CLASSIFICATION PERFORMANCES FOR EACH 
SUBJECT AND FOR ALL 66 PAIRS OF TASKS  
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count • 85.71 93.33 81.95 87.02 76.98 69.23 72.73 74.62 87.3 93.98 91.34

fingersL 96.12 • 76.80 86.36 80.65 90.70 94.03 77.78 95.65 64.44 81.10 78.76

fingersR 93.33 67.69 • 85.94 76.98 89.92 88.72 74.81 90.77 63.33 82.73 72.27

armL 82.79 91.87 91.34 • 79.69 84.50 83.33 78.86 82.54 89.60 93.62 90.16

armR 87.10 88.55 85.27 52.76 • 75.21 85.16 66.13 77.24 90.78 91.34 90.16

letter 76.74 92.06 92.86 77.78 82.09 • 80.77 68.38 77.94 92.25 93.50 87.60

math 78.26 89.26 94.26 79.26 85.04 75.20 • 80.16 78.83 89.78 95.24 90.08

relax 84.55 82.95 82.33 69.70 74.05 68.12 77.52 • 75.59 81.15 88.98 83.72

rotate 65.60 92.86 95.20 63.57 71.82 62.18 57.63 64.84 • 82.84 93.70 93.28

wordG 91.47 66.67 79.26 80.00 85.09 89.68 94.07 84.21 90.91 • 73.28 72.93

wordN 93.44 78.90 82.76 89.47 84.39 97.73 95.35 87.50 94.53 64.75 • 75.61

wordP 85.16 76.76 73.53 84.96 84.21 83.33 87.10 73.81 90.08 66.39 76.52 • 

S2  

count • 80.77 54.07 65.75 78.33 80 77.31 61.90 55.45 77.04 77.86 82.01

fingersL 65.50 • 62.20 58.70 62.81 70.77 58.59 68.86 63.20 66.42 54.81 76.80

fingersR 68.33 77.34 • 68.75 78.81 79.31 70.4 67.41 68.18 68.42 75.21 74.82

armL 59.63 70.09 45.67 • 80.29 80.00 81.40 60.38 52.71 67.39 77.52 83.19

armR 71.11 63.43 67.88 57.63 • 65.77 58.91 79.31 73.81 61.40 67.41 78.08

letter 71.54 80.80 59.71 73.60 78.47 • 69.84 71.55 79.14 72.58 76.47 76.30

math 73.33 70.87 61.54 75.40 78.57 67.44 • 58.02 75.91 53.68 64.81 74.81

relax 79.84 85.00 75.83 80.51 83.45 77.70 73.39 • 83.74 77.30 65.87 76.92

rotate 68.97 81.54 68.29 72.22 82.17 81.03 74.58 68.94 • 79.30 80.45 85.60

wordG 75.83 69.42 59.57 61.54 81.56 76.34 68.91 70.18 67.63 • 68.75 74.40

wordN 76.61 87.50 61.59 69.05 84.17 75.00 61.22 60.47 72.95 64.57 • 63.43

wordP 81.9 79.23 68.97 73.94 80.73 70.00 74.17 74.40 82.30 70.00 55.37 • 

S3  

count • 83.59 92.86 82.84 84.44 83.33 81.82 76.64 80.49 82.96 81.6 86.07

fingersL 85.04 • 99.22 90.77 90.15 60.33 72.95 88.72 66.67 80.15 70.90 65.00

fingersR 92.31 98.43 • 66.13 90.51 97.60 97.67 84.38 90.70 87.31 86.36 94.96

armL 92.56 87.20 76.34 • 82.91 96.12 94.81 80.99 83.62 75.57 83.97 75.41

armR 89.17 88.62 82.47 76.09 • 82.76 90.98 89.15 76.42 86.09 84.21 79.07

letter 86.05 79.10 99.23 94.44 87.05 • 71.22 87.68 87.79 89.47 86.92 93.75

math 75.61 79.70 99.21 96.67 96.99 43.97 • 80.53 62.50 87.02 81.82 86.26

relax 80.51 90.98 89.76 73.13 84.92 85.47 84.51 • 80.69 78.26 73.02 83.06

rotate 90.15 94.07 97.62 89.21 93.18 95.16 96.30 86.36 • 95.00 87.93 86.40

wordG 82.50 82.35 83.47 66.13 89.29 89.34 82.26 62.39 64.44 • 78.05 65.32

wordN 86.92 81.82 86.18 85.48 72.13 82.40 84.55 73.64 74.10 70.45 • 79.31

wordP 91.73 86.96 94.85 86.47 92.06 92.91 94.35 91.60 73.08 89.31 89.93 • 

S4  

count • 88.41 72.36 86.67 80.6 60.58 58.99 74.22 72.48 85.29 95.20 94.16

fingersL 89.74 • 72.31 59.09 82.95 85.95 82.44 76.12 82.86 85.05 90.16 83.33

fingersR 81.06 76.80 • 67.77 69.23 76.00 75.44 73.38 78.79 88.89 92.31 89.93

armL 85.19 80.49 75.37 • 61.94 72.79 69.67 75.51 76.92 90.98 95.24 84.62

armR 68.60 73.81 68.00 59.50 • 58.99 65.52 76.86 63.91 89.15 93.89 93.85

letter 69.49 76.87 70.77 78.15 72.41 • 58.78 66.93 67.20 81.16 82.71 93.28

math 77.59 90.32 83.69 75.94 74.10 66.13 • 73.53 74.81 89.43 87.40 95.24

relax 86.61 82.64 81.90 81.20 78.36 70.31 77.31 • 87.72 72.97 82.91 94.70

rotate 71.70 82.61 59.35 72.80 65.57 66.15 65.00 73.76 • 94.35 92.25 95.49

wordG 94.96 89.86 89.92 91.73 97.62 93.16 91.67 90.48 93.89 • 63.24 87.69

wordN 98.46 89.47 92.00 93.80 95.97 91.80 92.97 90.58 94.44 69.75 • 91.80

wordP 95.76 80.62 93.33 92.00 92.00 92.65 92.25 92.68 96.72 87.20 90.98 • 



TABLE III.  THE BEST DISCRIMINATIVE 4-TASK SETS OBTAINED 
FOR S1, S2, S3, AND S4, RESPECTIVELY  

Subject 1st task 2nd task 3rd task 4th task  Mean performance 
Threshold value: 75 

fingersR letter math wordN 89.09 
Count fingersR letter wordN 88.94 
Count fingersR armL wordN 88.72 

fingersL letter math wordN 88.65 
fingersR armL letter wordN 88.51 

Threshold value: 80 

S1 

Count fingersR armL wordN 88.72 
Threshold value: 60 

armR relax rotate wordP 79.12 
armR letter rotate wordP 77.78 
Count armR relax wordP 77.33 
Letter relax rotate wordP 77.3 

fingersL letter rotate wordP 77.23 
Threshold value: 70 

Count letter wordG wordP 75.66 

S2 

Letter relax wordG wordP 73.97 
Threshold value: 70 

Count fingersR letter wordP 92.14 
fingersR letter rotate wordP 92 
fingersR armR math wordP 91.61 
fingersR letter relax wordP 91.27 
Count fingersR letter rotate 91.11 

Threshold value: 83 
Count fingersR letter wordP 92.14 

S3 

fingersR Letter relax wordP 91.27 
Threshold value: 60 

Count armL wordN wordP 91.99 
Count armR wordN wordP 90.94 
Count rotate wordN wordP 90.79 
Count fingersL wordN wordP 90.67 
Count relax wordN wordP 90.67 

Threshold value: 84 
Count armL wordN wordP 91.99 

S4 

Count armL wordG wordP 89.69 

TABLE IV.  FINALY SELECTED SUBJECT-SPECIFIC SETS OF 
TASKS 

Subject 1st task 2nd task 3rd task 4th task Mean 
performance 

S1 count fingersR armL wordN 88.72 
S2 armR relax rotate wordP 79.12 
S3 count fingersR letter wordP 92.14 
S4 count armL wordN wordP 91.99 

TABLE V.  THE CLASSIFICATION PERFORMANCES OBTAINED FOR 
EACH SUBJECT – FOR THE SELECTED AND FOR THE REFERENCE SET OF TASKS, 

RESPECTIVELY 

Selected set of tasks 

S1 S2 S3 S4 
count 78.48 armR 62.69 count 79.03 count 83.46 

fingerR 73.92 relax 59.09 fingersR 95.65 armL 74.44 
armL 73.47 rotate 82.50 letter 87.02 wordN 91.74 

wordN 82.02 wordP 75.00 wordP 85.22 wordP 92.08 
Reference set of tasks 

count 35.77 count 21.64 count 81.16 count 56.93 
letter 60.47 letter 34.55 letter 67.20 Letter 40.98 
math 48.06 math 30.00 math 56.45 Math 46.22 
rotate 59.06 rotate 46.53 rotate 85.12 Rotate 43.85 

 

TABLE VI.  THE CLASSIFICATION PERFORMANCES FOR S4 
(SECOND EEG DATA SET) 

TABLE VII.  THE DISCRIMINATIVE 4-TASK SETS OBTAINED FOR S4 
(SECONDEEG DATA SET)  

 

 

 

 

 

 

 

 

TABLE VIII.  THE CLASSIFICATION PERFORMANCES OBTAINED 
FOR S4 WITH FIRST AND WITH SECOND DATA SET, RESPECTIVELY  

First set of EEG data  Second set of EEG data 
 

count armL wordN wordP  count armL wordN wordP

count 83.46 11.02 3.94 1.58  81.24 5.69 9.66 3.41 

armL 15.04 74.44 3 7.52  7.29 76.23 8.36 8.12 

wordN 1.84 2.75 91.74 3.67  1.91 4.89 89.33 3.83 

wordP 0 4.32 3.6 92.08  0.25 4.1 4.64 91.01

The cross-validation set was, in this case, given by the all 
feature vectors obtained in the second session of recording. The 
results obtained for S4 on the second set of EEG data are 
presented in tables VI, VII, and VIII, respectively. 

In Tabel VII the first most discriminative 4-task sets for S4 
are listed in the decreasing order of their mean classification 
rates. The best 4-task combination selected for the first EEG 
data set was found as corresponding, for the second EEG data 
set, to the 9-th combination out of the 66 combinations. This 
combination was obtained for a threshold value of 70 but the 
maximum threshold value for this set could be 77.88.  

In Tabel VIII it can be seen that the classification 
performances obtained for subject S4 on the first data set, as 
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count • 96.61 88.55 89.52 96.88 87.68 85.5 83.45 87.79 83.58 87.3 91.6 
fingersL 93.42 • 83.09 90.32 90 87.5 84.06 88 95.2 87.9 80.17 79.03
fingersR 88.71 84.87 • 64.89 67.57 67.41 62.96 78.15 84.13 83.05 69.63 84.5 

armL 88.55 79.39 66.13 • 68.5 45.16 64.54 80.67 85.59 83.33 81.94 91.41
armR 93.7 73.91 66.67 55.47 • 55.73 70 84.3 70.73 82.4 81.3 85.47
letter 91.45 75.59 67.5 70.23 64.52 • 67.18 85.71 80.83 79.83 71.93 85.6 
math 86.29 76.92 70.83 70.18 74.81 70.97 • 88 78.29 76.27 71.64 79.66
relax 87.07 89.23 72.79 77.21 88.81 82.95 80 • 80.17 59.03 68.5 84.09
rotate 89.52 91.54 72.87 81.02 81.06 77.78 69.05 71.64 • 73.57 78.4 79.69
wordG 94.21 90.84 85.4 89.36 93.08 90.44 88.32 86.49 85.22 • 56.03 87.18
wordN 91.47 91.79 86.67 90.09 87.88 86.52 83.47 87.5 89.23 78.07 • 91.73
wordP 95.16 87.79 94.44 96.06 97.83 98.46 87.59 91.87 88.98 84.78 77.87 • 

1st task 2nd task 3rd task 4th task Mean 
performance 

Threshold value: 70 

count armR wordG wordP 90.49 
count fingerL armR wordP 90.12 
count armR relax wordP 90.02 
count fingerL armL wordP 89.91 
count armR wordN wordP 89.85 
count fingerL armR wordG 89.71 
count fingerL rotate wordP 89.69 
count armL wordG wordP 89.56 
count armL wordN wordP 89.39 

Threshold value: 83 

count armR relax wordP 90.02 
count armL wordG wordP 89.56 
count fingerR wordG wordP 88.43 
count fingerL fingerR wordG 88.35 



well as, on the second data set (when using the same selected 
4-task combination) are only slightly apart ones from another. 
This essentially sustains the idea of consistency of the subject-
specific selected set of tasks – an important aspect in any BCI 
application. We stress here that the recordings were done in 
non-stress conditions and with subjects rating them as not 
being tired or drowsing at all. 

VI. DISCUSSIONS AND CONCLUSIONS 
The idea of designing a subject-specific BCI application is 

not quite innovative. Also, this conclusion can be drawn from 
several papers were the need for subject specific both 
electrode-montage [1], [6] and features extraction [1], [10] is 
reported. 

In [11] it was suggested that even if improvements remain 
possible in all areas of the BCI field from preprocessing to 
classification, one of the best areas in which improvements in 
classification accuracy can be made is by discovering new EEG 
extracted features. If one take this last approach it still remains 
unsolved the issue of inter-subjects variability of classification 
accuracies for a given feature vector [6]. Unlike this frequently 
used approach in this paper we proposed a new BCI-problem 
approaching. Although our research obeys the same idea of 
subject dedicated BCI design, the novelty of this research 
consists in revealing the great importance the particular most 
discriminative mental tasks’ selecting process (employed in a 
first step of analysis) has for a given subject. Exactly, if in 
others papers [6] the deduction that different individuals have 
varying classification performances due to the putative 
different individual thought patterns is only a derivative of their 
main analysis, in our research the focus is put on the important 
role the subject-specific selected mental tasks play within the 
implementation of a specific BCI application. Thus, in order to 
reveal what improvements in performances could be obtained 
only by making such preliminary analysis, we made a 
comparative study between two different sets of tasks (i.e., one 
set was the subject-specific selected set of tasks while the other 
was the imposed set composed of  four out of five mental tasks 
proposed in [3]). In order to obtain a valid comparative result in 
both cases the same EEG processing methodology was used. In 
such conditions, the significant differences obtained in the 
classification performances between the two sets (see Table V) 
were due entirely to the new, more appropriate, paradigms used 
(i.e., the use of subject-specific mental tasks). 

However, one must pay attention to the fact that we can talk 
about the best subject-specific set of tasks only in conjunction 
with a given feature vector. Thus, for a given subject and for 
different feature vectors one can expect to obtain other 
different best 4-task combinations. 

The advantage of exploiting such a result is straightforward. 
Thus, using some simple (less time consuming) but, in the 
same time, largely recognized useful EEG extracted features 
(e.g., AR coefficients that incorporate cortical processing 
temporal information, the frequency band asymmetry ratios 
that take advantage of the hemispheric asymmetries, the 
coherence function that quantifies the local or distal 
synchronised activity of different cortical networks etc.) in 
synergism with the corresponding determined best set of tasks, 

one can now easily develop high quality subject-dedicated BCI 
applications. 

A further observation that can be drawn from our above-
presented results is that each of the four selected sets of tasks 
was composed of both motor and non-motor cognitive tasks. 
Practically, through the large and diverse set of covert 
cognitive tasks we used in this study, we conferred more 
flexibility to the subject-appropriate tasks’ selection process. 

In conclusion, in the on-line BCI applications, in order to 
obtain high performances, two approaches could be taken into 
consideration: (i) first, for a given set of mental tasks one could 
search for both, the best EEG discriminative features and the 
less time-consuming feature extraction methodology and (ii) 
second, for given EEG features and extraction methodology 
one could find the subject’ most discriminative tasks out of a 
proposed set of mental tasks. The last approach gives to the 
researcher the liberty of choosing the mental tasks according to 
the particularities of the subject’s cortical dynamics avoiding 
thus some possible constraints mainly imposed by the selected 
paradigm. However, none of the above approaches can 
guarantee to be the best solution. What matters is to exploit 
completely the relation that exists between the EEG features 
proposed in the literature and the corresponding selected 
mental tasks in order to obtain high on-line BCI performance.   
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